Suivez nous sur les réseaux sociaux

Cet outil a vocation à informer, diffuser l’information auprès des jeunes cardiologues (internes, assistants, chefs de cliniques, jeunes praticiens, etc.), et faciliter les échanges.

Toutes nos publications

Les publications du CCF t’intéressent ?

Rejoins le CCF pour rester informé(e) de ses dernières publications et celles sélectionnées et résumées par ses membres !

Une question ?
    Publications

    Machine-learning score to predict in-hospital outcomes in patients Hospitalized in Intensive Cardiac Care Unit

    By Published On: 23/12/2024

    Machine-learning score to predict in-hospital outcomes in patients Hospitalized in Intensive Cardiac Care Unit

    Orianne Weizman, Kenza Hamzi, Patrick Henry, Guillaume Schurtz, Marie Hauguel-Moreau, Antonin Trimaille, Marc Bedossa, Jean Claude Dib, Sabir Attou, Tanissia Boukertouta, Franck Boccara, Thibaut Pommier, Pascal Lim, Thomas Bochaton, Damien Millischer, Benoit Merat, Fabien Picard, Nissim Grinberg, David Sulman, Bastien Pasdeloup, Yassine El Ouahidi, Treçy Gonçalves, Eric Vicaut, Jean-Guillaume Dillinger, Solenn Toupin, Théo Pezel, on behalf of the ADDICT-ICCU Investigators

    European Heart Journal – Digital Health, December 2024, ztae098
    DOI: 10.1093/ehjdh/ztae098

    Abstract

    Aims

    Although some scores based on traditional statistical methods are available for risk stratification in patients hospitalized in cardiac intensive care units (CICUs), the interest of machine learning (ML) methods for risk stratification in this field is not well established. We aimed to build an ML model to predict in-hospital major adverse events (MAE) in patients hospitalized in CICU.

    Methods and Results

    In April 2021, a French national prospective multicentre study involving 39 centres included all consecutive patients admitted to CICU. The primary outcome was in-hospital MAE, including death, resuscitated cardiac arrest, or cardiogenic shock. Using 31 randomly assigned centres as an index cohort (divided into training and testing sets), several ML models were evaluated to predict in-hospital MAE. The eight remaining centres were used as an external validation cohort. Among 1499 consecutive patients included (aged 64 ± 15 years, 70% male), 67 had in-hospital MAE (4.3%). Out of 28 clinical, biological, ECG, and echocardiographic variables, seven were selected to predict MAE in the training set (n = 844). Boosted cost-sensitive C5.0 technique showed the best performance compared with other ML methods [receiver operating characteristic area under the curve (AUROC) = 0.90, precision–recall AUC = 0.57, F1 score = 0.5]. Our ML score showed a better performance than existing scores (AUROC: ML score = 0.90 vs. Thrombolysis In Myocardial Infarction (TIMI) score: 0.56, Global Registry of Acute Coronary Events (GRACE) score: 0.52, Acute Heart Failure (ACUTE-HF) score: 0.65; all P < 0.05). Machine learning score also showed excellent performance in the external cohort (AUROC = 0.88).

    Conclusions

    This new ML score is the first to demonstrate improved performance in predicting in-hospital outcomes over existing scores in patients admitted to the intensive care unit based on seven simple and rapid clinical and echocardiographic variables.

    Partagez cet article :

    Partagez cet article :

    Article créé par : Antonin Trimaille

    Reste à la pointe de l’actualité avec Le Journal du CCF !

    Destiné aux internes et jeunes cardiologues, le Journal du CCF est une ressource incontournable pour enrichir ta formation et rester informé(e) des dernières actualités en cardiologie.

    • Un contenu pédagogique riche : revues bibliographiques, dossiers thématiques et cas cliniques

    • Des ressources pratiques : quiz, astuces et conseils

    • Un lien direct avec la communauté : échange avec les jeunes cardiologues de toute la France

    • Des numéros spéciaux : focus sur des sujets d’actualité et nouveautés en cardiologie

    • C’est gratuit ! : un accès libre et sans engagement à tous les numéros